GCSE (9-1) Physics A (Gateway Science) J249/03 Paper 3 (Higher Tier) Sample Question Paper

Date - Morning/Afternoon

Time allowed: 1 hour 45 minutes

You must have:

- the Data Sheet

You may use:

- a scientific or graphical calculator
- a ruler

INSTRUCTIONS

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes above with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION

- The total mark for this paper is $\mathbf{9 0}$.
- The marks for each question are shown in brackets [].
- Quality of extended responses will be assessed in questions marked with an asterisk (*).
- This document consists of $\mathbf{2 8}$ pages.

SECTION A

Answer all the questions.
You should spend a maximum of 30 minutes on this section.

1 Look at the circuit diagram.

Use the formula resistance $=$ potential difference \div current to calculate the resistance of bulb \mathbf{D}.

A 2Ω
B 4Ω
C 6Ω
D 8Ω

Your answer \square

2 The diagram shows a wire carrying an electric current.

Which diagram shows the magnetic field viewed from above, with the current coming towards you?

Your answer \square

3 Which of the following is not needed to generate a.c. in an alternator?
A changing magnetic field
B coil of wire
C commutator
D rotating magnet
Your answer \square

4 A student measures the magnetic field strength around a current carrying conductor at increasing distances from the conductor.

She plots her results.

The current in the conductor is decreased and a new graph plotted.
Which is the correct graph?

	B
	D

Your answer \square

5 A car travels 200 km in four hours.
If the car doubles its speed how long would it take to travel 50 km ?
A 0.5 hours
B 1.0 hours
C 2.0 hours
D 4.0 hours

Your answer \square

6 A graduated syringe contains air.
It is put in a freezer to cool it down.
When it is removed from the freezer the piston has moved inwards.

syringe when cooled

The density of the air in the syringe when cooled is $2.4 \mathrm{~kg} / \mathrm{m}^{3}$.
What was the density of the air at room temperature?

A $0.6 \mathrm{~kg} / \mathrm{m}^{3}$
B $1.2 \mathrm{~kg} / \mathrm{m}^{3}$
C $2.4 \mathrm{~kg} / \mathrm{m}^{3}$
D $4.8 \mathrm{~kg} / \mathrm{m}^{3}$

Your answer \square

7 A body has three forces, \mathbf{x}, \mathbf{y} and \mathbf{z} acting on it.
The body is in equilibrium.
Which vector diagram represents this situation?
A

B

Z

C
D

Your answer \square

8 A uniform 1.0 m rod is pivoted at its centre.

What is the value of the anti-clockwise moment about the pivot?
A 10 Nm
B 15 Nm
C 40 Nm
D 100 Nm
Your answer \square

9

Calculate the power dissipated by resistor \mathbf{R}.
A 30 W
B $\quad 15 \mathrm{~W}$
C $\quad 12 \mathrm{~W}$
D $\quad 3 \mathrm{~W}$

Your answer \square

10 The diagram shows two poles of a magnet.

X is the position of a wire carrying a current perpendicularly into the paper.
Which direction does the wire move?

11 A piece of metal has a volume of $2.0 \times 10^{-5} \mathrm{~m}^{3}$.
The density of it is $8.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.
What is its mass?
A $\quad 2.5 \times 10^{-3} \mathrm{~kg}$
B $\quad 4.0 \times 10^{-2} \mathrm{~kg}$
C $\quad 1.6 \times 10^{-1} \mathrm{~kg}$
D $\quad 1.6 \times 10^{3} \mathrm{~kg}$

Your answer \square

12 The diagram shows 3 gears.

Gear \mathbf{X} is rotated clockwise at 1.0 rotations per second.
Which row is the correct description of the movement of gear \mathbf{Z} ?

| | direction of |
| :---: | :---: | :---: |
| rotation | | \(\left.\begin{array}{c}rotations per

second\end{array}\right]\)

Your answer \square

13 A car and driver with a total mass of 1000 kg is travelling at $20 \mathrm{~m} / \mathrm{s}$.
The driver applies the brake and the car comes to a stop in 4 seconds.
What is the mean force on the car?

A $\quad 80000 \mathrm{~N}$
B $\quad 5000 \mathrm{~N}$
C $\quad 200 \mathrm{~N}$
D $\quad 12.5 \mathrm{~N}$

Your answer

14 The current in a 12Ω resistor is 9.0 A .
How much power is dissipated?

A $\quad 108 \mathrm{~W}$
B $\quad 972 \mathrm{~W}$
C $\quad 1296 \mathrm{~W}$
D $\quad 11664 \mathrm{~W}$

Your answer

15 How much work is done on a spring, of spring constant $16 \mathrm{~N} / \mathrm{m}$, when it is stretched 50 cm ?
A 2.0 J
B $\quad 8.0 \mathrm{~J}$
C $\quad 12.5 \mathrm{~J}$
D $\quad 25.0 \mathrm{~J}$

Your answer \square

SECTION B

Answer all the questions.
16 A student completes an experiment to find the specific heat capacity of a metal.

(a) (i) The student takes voltage and current measurements. Suggest three other measurements they need to take?
\qquad
\qquad
\qquad
(ii) Describe how these measurements could be used to determine the specific heat capacity of the metal.
\qquad
\qquad
\qquad
(b) The value obtained from the experiment is much higher than expected.

Suggest two reasons how this could have occurred and two improvements to the experimental procedure.
\qquad
\qquad
\qquad
\qquad
\qquad

17 A student rubs a balloon against a scarf.

(a)* Describe how the balloon has become charged.

Suggest a way to show that the balloon is charged. What would you expect to see and why?
\qquad
(b) The rate of flow of electrical charge in a circuit is a current.

A current of 40 mA transfers a charge of 3.6 C .
Calculate how long this takes.
Show your working.
\qquad
\qquad
\qquad
answer: seconds

18 (a) A depth of 10 m of water exerts the same amount of pressure as the entire Earth's atmosphere which is $\sim 120 \mathrm{~km}$ thick.

Suggest why.
\qquad
(b) A diver takes some pressure readings.

Their results are in the table below.

Depth of water (m)	Pressure (standard units)
0	1
10	2
20	3
30	4
40	5
50	6

Use the data to describe the relationship between the depth of water and pressure.
\qquad
\qquad
\qquad
(c) Suggest why there is pressure at 0 metres.
\qquad
\qquad
(d) A container of vegetable oil has 3 holes in it.

The vegetable oil has a density of $9.1 \times 10^{2} \mathrm{~kg} / \mathrm{m}^{3}$.
Calculate the change in pressure from \mathbf{A} to \mathbf{B}.
Show your working and give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

TURN OVER FOR THE NEXT QUESTION

19 A student takes voltage and current measurements for four resistors.
The table shows the results from this experiment.

Resistor	Voltage (\mathbf{V})	Current (\mathbf{A})	Resistance $(\boldsymbol{\Omega})$
A	12.0	2.0	
B	6.0	1.5	
C	7.5	1.5	
D	8.0	2.0	

(a) Which two resistors have the same resistance value?

Use the data to show this.
\qquad
\qquad
\qquad
(b) Calculate the maximum resistance that can be made using all four resistors.
\qquad
answer:
Ω
(c) (i) Draw a circuit diagram that could be used to find out how the resistance of a filament bulb changes with current.

Describe the readings you need to take.
\qquad
\qquad
\qquad
(ii) Sketch the shape of the graph using the axes below.

State how this graph can be used to calculate resistance at any specific value of current.
\qquad
\qquad
(d) A voltmeter is used to measure the output voltages produced from the circuit.

The voltmeter is not connected to a circuit and not recording a voltage.

Name the error on the voltmeter and suggest how it should be dealt with.
\qquad
\qquad

20 A student investigates the motion of a glider on a frictionless air track using the apparatus shown in the picture.

(a) (i) Explain how the student can use this apparatus to demonstrate Newton's Second Law.

Include details of any additional equipment required.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) A 0.25 kg glider is pulled by a 1.0 N force.

Calculate the acceleration of the glider using the formula:

$$
\text { force = mass } \mathrm{x} \text { acceleration }
$$

\qquad
\qquad
\qquad
\qquad
(iii) Suggest reasons why the recorded value was less than your calculated value.
\qquad
\qquad
(b) The student repeats the experiment for 4 more forces.

Force $\mathbf{(N)}$	Acceleration (m/s $\mathbf{2}$)			
	Attempt $\mathbf{1}$	Attempt $\mathbf{2}$	Attempt $\mathbf{3}$	Mean
1.0	3.8	3.9	3.7	3.8
2.0	7.8	7.7	7.7	7.7
3.0	11.2	11.4	11.6	11.4
4.0	12.0	14.9	15.1	13.8
5.0	19.0	18.9	19.1	19.0

There is an anomaly in the results.
Identify the anomaly and explain how the student could have dealt with it.
\qquad
\qquad
\qquad
(c) Explain what is meant by a reproducible experiment.
\qquad
\qquad

21 (a) (i) Write down the name of the rule which can be used to predict the direction of the force perpendicular to a current-carrying conductor in a magnetic field.
\qquad
\qquad

A student places four wires of different lengths perpendicular to different magnetic fields with different currents flowing.

Look at the table of their results.

Wire	Magnetic flux density (\mathbf{T})	Current (A)	Length (\mathbf{m})
A	0.10	2.5	0.50
B	0.15	2.0	0.75
C	0.20	4.5	0.25
D	0.25	5.0	1.00

(ii) Use the data to show that wire \mathbf{D} experiences the highest force.

Show your working.
\qquad
\qquad
\qquad
(b) (i) The student decides to build a model transformer.

The transformer is a step-up transformer which doubles the input voltage.
Describe how they could build this step-up transformer in a science laboratory.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Suggest one risk associated with this experiment and how it can be reduced.
\qquad
\qquad
(c) Describe how a microphone works.
\qquad
\qquad
\qquad

22 Two ice skaters A and B, at rest, start together on the ice.
The ice skaters push apart and they move off in opposite directions.

(a) State the law of conservation of momentum.
\qquad
\qquad
(b) Use the data and your knowledge of momentum to calculate the velocity of skater \mathbf{A} after pushing.
\qquad
\qquad
\qquad
\qquad

23 A student researches potential and kinetic energy. She looks at some data from experiments with motion trolleys and energy.

The trolleys are stationary at the top of the ramp and have a gravitational potential energy of 8 J .
Each trolley has a mass of 1 kg .
Look at the research data on the trolleys.

Trolley	Velocity at the bottom of the ramp (m/s)
W	3
X	4
Y	5
Z	6

The student thinks the data is wrong.
Use the data and your understanding of energy transfer to justify why trolley W has the most likely velocity and why X, Y and Z do not.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

24 A free-fall skydiver falls from a plane and reaches terminal velocity after 15 seconds.
Look at the graph of her motion.

(a) Use the graph to find the acceleration at 5 seconds.
\qquad
\qquad
\qquad
\qquad
\qquad
answer: $\mathrm{m} / \mathrm{s}^{2}$
(b) Use the graph to find the distance travelled between 0 and 2.5 seconds.
\qquad
\qquad
\qquad
(c) A skydiver jumps from an aeroplane, falls towards the ground, opens her parachute and falls safely to earth.

Look at the graph of the velocity of the skydiver as she falls.

Look at these regions of the graph:

- x
- y

Use ideas about forces to explain the motion during \mathbf{x} and \mathbf{y}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

BLANK PAGE

Copyright Information:

Image reproduced by permission from George Retseck.www.georgeretseck.com

OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

